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Abstract

In this paper, non-classical numerical schemes are proposed for the approximation of Cauchy
type oscillatory and strongly singular integrals in complex plane. The schemes are developed
by incorporating classical quadrature rulemeant for the Cauchy type complex singular integrals
over a line segment in complex plane with a quasi exact quadrature method meant for the nu-
merical integration of complex definite integrals with an oscillatory weight function. The error
bounds are established and the schemes are numerically validated using a set of standard test
integrals.Numerical results show that these schemes are efficient.
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1 Introduction

In this paper, we consider the numerical approximations of the following three singular inte-
grals

I(u) = P

∫ λ+l

λ−l

u(z)

z − λ
dz, (1)

J(u) = P

∫ λ+l

λ−l

u(z)

z − λ
eiwzdz;w ∈ R− {0}; i =

√
−1, (2)

and

H(u) = H

∫ λ+l

λ−l

u(z)

(z − λ)n
dz;n ∈ N− {1}, (3)

where u(z) is assumed to be analytic in a domain

Ω = {z ∈ C : |z − λ| < ρ = r|l|, r > 1},

lying in the complex plane C containing the directed line segment L joining the points from λ− l
to λ + l. Das and Hota [5] recently have framed a derivative free one parameter interpolatory
type of quadrature rule for the numerical evaluation of the integral (1.1). The rule constructed by
them is claimed as the rule which numerically integrates the complex CPV integral more precisely
than the rules existing in literature. Further, Bej, Hota and Das([8]) have derived somemore rules
of algebraic degree of precision eight involving less number of nodes (six nodes) from the rules
due to Das and Hota[5] for the numerical integration of the same integral. To approximate the
oscillatory integrals few works have also been done by the eminent researchers. The authors in
[9] evaluated oscillatory integrals by analytic continuation. Later in 2000 generalized quadrature
rules for oscillatory integrals were given in [2] whereas author of [10] proposed a new algorithm
for computing Cauchy principal value integrals of oscillatory functions. However, in this paper
we have constructed a family of two parameter rules of precision at least eight for the numerical
approximations of complex CPV integrals of the type (1.1). Subsequently, three rules of precision
ten have been constructed from the family of rules of precision at least eight and applied for the
approximate evaluation of integrals of the kind (1.2) and (1.3).

2 Formulation of Rules

To construct the proposed family of rules, nodes that we have chosen are

λ± αlλ± iβl,

along with five more nodes
λ± l, λ, λ± il,

due to Birkhoff-Young [1] for the numerical integration of complex line integrals. With these nodes
the family of two parameter rules of precession at least eight is defined and denoted by
Ru(α, β) = w0u(λ) + w1[u(λ+ l)− u(λ− l)] + w2[u(λ+ il)− u(λ− il)] + w3[u(λ+ αl)− u(λ− αl)]

+ w4[u(λ+ iβl)− u(λ− iβl)]; i =
√

(−1); 0 < α 6= β ≤ 1, (4)
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for the approximation of the CPV integral given in (1.1).

Since the quadrature rule Ru(α, β) is fully symmetric and exactly integrates all even degree
monomials therefore, to determine the weights w0, w1, w2, w3, w4 and the parameters α and β we
make here the assumption that

I((z − λ)k) = Ru(α, β)((z − λ)k), (5)

for k = 0, 1, 3, 5 and 7.

At this stage, the equation (5) gives

w0 = 0;

w1 + iw2 + αw3 + iβw4 = 1;

w1 − iw2 + α3w3 − iβ3w4 = 1
3 ;

w1 + iw2 + α5w3 + iβ5w4 = 1
5 ;

w1 − iw2 + α7w3 − iβ7w4 = 1
7 ;

(6)

and then solving it, we obtain 

w0 = 0;

w1 = 18+28β2−28α2−70α2β2

105(1−α2)(1+β2) ;

w2 = i
[
35α2β2+7α2−7β2−3
105(1−α2)(1+β2)

]
;

w3 = 20+84β2

105(α2+β2)(α−α5) ;

w4 = i
[

20−84α2

105(α2+β2)(β−β5)

]
.

(7)

With these weights we claim here that the rule Ru(α, β) is the quadrature rule of precision at
least eight meant for the approximations of the integrals of the type (1.1). Further, to obtain the
quadrature rules of precision ten we assume here that the function u is sufficiently differentiable
in the disc Ω. Now by using Taylor’s theorem and then, with subsequent simplifications we get

Ru(α, β) = 2lu′(λ) +
2l3

3(3!)
u(3)(λ) +

2l5

5(5!)
u(5)(λ)

+
2l7

7(7!)
u(7)(λ) +

2l9

(9!)

[
21 + 20β2 − 20α2 − 84α2β2

105

]
u(9)(λ)

+
2l11

(11!)

[
15− 20(α4 + β4 − α2β2) + 84α2β2(β2 − α2)

105

]
u(11)(λ) + ....

(8)

Again, denoting Eu(α, β) as a truncation error associated with the rule Ru(α, β) we get

I(u) = Ru(α, β) + Eu(α, β);
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where

Eu(α, β) =
2l9

(9!)

[
252α2β2 + 60α2 − 60β2 − 28

315

]
u(9)(λ)

+
2l11

11!

[
220(α4 + β4 − α2β2)− 924α2β2(β2 − α2)− 60

1155

]
u(11)(λ) + ....

(9)

Now, choosing β as 1√
21

andmaking the leading coefficient of u(9)(λ) as zero, α =
√

3
7 is obtained.

With this (α, β) = (
√

3
7 ,

1√
21

), the rule Ru(α, β) given in equation (4) reduces to a rule

T1(u) = w0u(λ) + w1[u(λ+ l)− u(λ− l)] + w2[u(λ+ il)− u(λ− il)]
+ w3[u(λ+ αl)− u(λ− αl)] + w4[u(λ+ iβl)− u(λ− iβl)],

(10)

of precision ten associated with the weights

w0 = 0; w1 =
31

330
; w2 = i

1

375
; w3 =

147

250

√
7

3
; w4 = −i441

√
21

1375
, (11)

designed for the approximation of the CPV integral (1.1). Proceeding in the same way we obtain
two more rules of precision ten

T2(u) =
1501

16170
[u(λ+ l)− u(λ− l)] + i

47

19110
[u(λ+ il)− u(λ− il)]

+
257049

447370

√
39

17
[u(λ+ αl)− u(λ− αl)]− i177147

√
27

528710
[u(λ+ iβl)− u(λ− iβl)],

(12)

and

T3(u) =
997

11040
[u(λ+ l)− u(λ− l)] + i

58

28365
[u(λ+ il)− u(λ− il)]

+
225792

413885

√
42

19
[u(λ+ αl)− u(λ− αl)]− i107163

√
63

292640
[u(λ+ iβl)− u(λ− iβl)],

(13)

for different values of (α, β) =
(√

17
39 ,

1√
27

)
and

(√
19
42 ,

1√
63

)
for the approximate evaluation of the

CPV integral (1.1).

Denoting ETk
(u) as the truncation error associated with the rules Tk(u) for k = 1, 2, 3 we obtain

ET1 = −2l11

11!

(
7232

509355

)
u(11)(λ)− 2l13

13!

(
227456

12641265

)
u(13)(λ) + ...

ET2
= −2l11

11!

(
1088

81081

)
u(11)(λ)− 2l13

13!

(
32128

1848015

)
u(13)(λ) + ...

ET3
= −2l11

11!

(
400

33957

)
u(11)(λ)− 2l13

13!

(
607384

37923795

)
u(13)(λ) + ...

(14)
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From the equation(2.14) it is evident that all the rules Tk(u); for k = 1, 2 and 3 are the rules of
precision ten and are used to approximate the integral (1.1) numerically.

3 Scheme for the Approximation of J(u)

J(u) = P

∫ λ+l

λ−l

u(z)

z − λ
coswzdz;w ∈ R− {0}.

Though, the integral

J(u) =

∫
L

eiwz
u(z)

z − λ
dz,

=

∫
L

g(z)

z − λ
dz; g(z) = eiwzu(z),

is an integral of Cauchy type and belongs to the class of integrals which can be numerically eval-
uated by the family of rules as proposed in the above section, but its degree of accuracy decreases
rapidly as |w| increases from |w| = 1(1)5 andfinally diverges significantly for large value of |w| ≥ 6;
when the same rule is applied for its numerical approximation. It is pertinent to note here thatwith
the increasing value of |w| the oscillations of eiwz causes the oscillation of the integrand function
and thus, a severe cancellation occurs in the process of numerical approximation.

Looking to these limitations, we have devised here an efficient numerical scheme with the
help of quadrature rule constructed for the numerical evaluation of complex CPV integrals of the
type(1.1) and a quasi-exact non-classical quadrature rule analogous to Filon type rules for the
approximate evaluation of the Cauchy type oscillatory integral

J(u) = P

∫ λ+l

λ−l
eiwz

u(z)

z − λ
dz;

where u(z) is a smooth function. Further, the scheme also has been validated numerically by some
common integrals.

To construct the scheme, we rewrite the integral J(u) as

J(u) =

∫ λ+l

λ−l
eiwz

u(z)

z − λ
dz

=

∫ λ+l

λ−l
(eiwz − eiwλ)

u(z)

z − λ
dz + eiwλ

∫ λ+l

λ−l

u(z)

z − λ
dz

= Jo(u) + eiwλI(u), (15)
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where

Jo(u) =

∫ λ+l

λ−l
(eiwz − eiwλ)

u(z)

z − λ
dz,

is an oscillatory integral without having any Cauchy type singularities and

I(u) =

∫ λ+l

λ−l

u(z)

z − λ
dz,

is a singular integral of type (1.1) and can be approximated numerically by the qudrature rules as
projected in the above section.

Furthermore, because a large value of |w| generates strong oscillations of the integrand func-
tion of the first integral Jo(u),the outcome of its frequently has a negative impact on the result of
the second singular integral’s (I(u)) approximation, and therefore a desired precision for the in-
tegral J(u) may not be obtained. Consequently, to get around this difficulty, we suggest a quickly
convergent quasi-exact approach that nearly perfectly integrates the integral Jo(u).

3.1 The Proposed Quasi-Exact Method

Let the function u(z) is continuous and infinitely differentiable in the complex plane C. Then,
expanding u(z) by using Taylor’s expansion about the point of singularity z = λwe get

u(z) =

∞∑
k=0

ck(z − λ)k,

where ck = u(k)(λ)
k! are the Taylor’s coefficients. Truncating the above series after the first (n + 1)

terms, the interpolating polynomial gn(x) with the interpolating condition

g(i)n (z) = u(i)(z);∀i = 0(1)n,

is obtained as

gn(z) = u(λ) +

n∑
k=1

u(k)(λ)

k!
(z − λ)k.

Using the standardmethod[8] it can be proved that the truncation error Ẽn(u) associated with
the polynomial gn(z) is

Ẽn(u) =
(z − λ)n+1

(n+ 1)!
u(n+1)(ξ),

for ξ an arbitrary point on the line segment L joining the point λ− l to λ+ l. Now,

u(z) ' gn(z).
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Thus,

Jo(u) =

∫ λ+l

λ−l
(eiwz − eiwλ)

u(z)

z − λ
dz

'
∫ λ+l

λ−l
(eiwz − eiwλ)

gn(z)

z − λ
dz

= u(λ)

∫ λ+l

λ−l

eiwz − eiwλ

z − λ
dz +

∞∑
k=1

u(k)(λ)

k!

∫ λ+l

λ−l
(z − λ)k−1(eiwz − eiwλ)dz

= u(λ)(Jc + iJs) +

n∑
k=1

u(k)(λ)

k!
(ak−1 − γk−1), (16)

where

Jc =

∫ λ+l

λ−l

coswz

z − λ
dz = −2sin (wλ)Si (wl),

Js =

∫ λ+l

λ−l

sinwz

z − λ
dz = 2cos (wλ)Si (wl),

ak−1 =

∫ λ+l

λ−l
(z − λ)k−1(eiwz)dz,

and

γk−1 =

∫ λ+l

λ−l
eiwλ(z − λ)k−1dz =

eiwλlk

k
(1− (−1)k).

Theorem 3.1. If ak−1 =
∫ λ+l
λ−l (z − λ)k−1(eiwz)dz and ai = 0 for i ∈ Z, i < 0, then

iwak−1 + (k − 1)ak−2 = lk−1eiwλ[eiwl − (−1)k−1e−iwl], (17)

and the non-homogeneous linear recurrence relation holds ∀k = 1(1)n.

Proof. Let

ak−1 =

∫ λ+l

λ−l
(z − λ)k−1(eiwz)dz.

Applying the method of integration by parts, we have

ak−1 =

[
(z − λ)k−1

eiwz

iw

]λ+l
λ−l
− k − 1

iw

∫ λ+l

λ−l
(z − λ)k−2(eiwz)dz

=
lk−1eiwλ

iw
[eiwl − (−1)k−1e−iwl]− k − 1

iw
ak−2

=⇒ iwak−1 + (k − 1)ak−2 = lk−1eiwλ[eiwl − (−1)k−1e−iwl],

which completes the proof of the theorem.
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The recurrence relation (17) can be rewritten as

ak +B(k − 1)ak−1 = lkABC, k = 0, 1, 2, ..

where
A = eiwλ, B =

1

iw
,C = eiwl − (−1)k−1e−iwl.

On solving by following standardmethod of solution of recurrence relation, its particular solution
is obtained as

ak = A

k−1∑
i=1

(−1)i
k!

(k − i)!
(eiwl − (−1)k−ie−iwl)Bi+1lk−i + k!(−B)ka0, (18)

with a0 = 2
we

iwλ sin wl.

3.2 Error Analysis

On the domain Ω, suppose that the function u(z) is infinitely differentiable. Let us denote the
error associated with the scheme designed for the numerical integration of J(u) by EJ(u). Then,

|EJ(u)| ≤ |Jo(u)−Ro(u)|+ eiwλ|I(u)− Tn(u)|
= |Eo(u)|+ |EI(u)|, (19)

where
Eo(u) = Jo(u)−Ro(u),

and
EI(u) = eiwλ|I(u)− Tn(u)|,

are the error terms associated with the quadrature rulesRo(u) and Tn(u) designed for the approx-
imation of the Filon type oscillatory integral Jo(u) and CPV integral I(u) respectively. However,

|Eo(u)| ≤ Mn+1

(n+ 1)!

∣∣∣∣∣
∫ λ+l

λ−l
(z − λ)n+1(eiwz − eiwλ)dz

∣∣∣∣∣
≤ Mn+1

(n+ 1)!

[∣∣∣∣∣
∫ λ+l

λ−l
(z − λ)n+1eiwzdz

∣∣∣∣∣+ 2
|l|n+2

n+ 2

]
, (20)

whereMn+1 = max
ξ∈L
|u(n+1)(ξ)|. Further,∣∣∣∣∣

∫ λ+l

λ−l
(z − λ)n+1eiwzdz

∣∣∣∣∣ =
1

|w|

[
2|l|n+1 + (n+ 1)

∣∣∣∣∣
∫ λ+l

λ−l
(z − λ)neiwzdz

∣∣∣∣∣
]

≤ |l|
n+1

|w|

[
2 + (n+ 1)

∫ 1

−1
|t|ndt

]
= 4
|l|n+1

|w|
,

18
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where z = λ+ l and −1 ≤ t ≤ 1. As a result,

|Eo(u)| ≤ 2|l|n+1Mn+1

(n+ 1)!

[
2

|w|
+
|l|

n+ 2

]
.

Since, from equation(2.14) it is evident that

|EI(u)| ≤ 2|l|11CM11

(11)!
; 0 < C < 1,

we get

|EJ(u)| ≤ 2|l|11M11

(11)!

[
C +

2

|w|
+
|l|
12

]
, (21)

for n = 10. That is, if the Taylor’s series is truncated after first eleven terms then the scheme
will provide at least 10 decimal place of accuracy for an integral of the type(1.2). This fact is
vividly seen when the proposed scheme is applied for the numerical approximation of such type
of integrals.

4 Approximation of Integrals of the Type H(u)

H(u) = H

∫ λ+l

λ−l

u(z)

(z − λ)n
dz;n ∈ N− {1}, (22)

where the function f is differentiable a sufficient number of times in

Ω = {z ∈ C : |z − λ| < ρ = r|l|, r > 1},

of the complex plane C and L joining the points λ− l to λ+ l lying in the disc Ω.

It is seen that rules designed for the integration of the integral (1.1) numerically lead to un-
controlled instability when these are used to approximate the integral provided in equation (22).
This is due to the presence of singular point λ of order α > 1 on the path of integration L. The
integral defined in equation (22) is called hyper singular integral in complex plane.

A substantial work due to the eminent researchers exists in literature for the numerical inte-
gration of its real counter part

J∗ = H

∫ b

a

u(x)

(x− c)2
dx; a < c < b. (23)
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The author in [4] proposed a new algorithm whereas authors in [7] generated Gauss type
quadrature rules for Cauchy principal value and Hadamard finite part integrals. However, very
few rules are available in the literature of numerical integration for the former.

Therefore, here we’ve presented a numerical approach constructed with the help of the rules
designed for the integration of (1.1) numerically for the approximation of the integral (22).

4.1 Scheme for Numerical Evaluation of Complex Hyper Singular Integral

Since u(z) is analytic and infinitely differentiable on the disc Ω, expanding u(z) about the point
z = λ,we obtain

u(z)−
∑n−2
k=0 ck(z − λ)k

(z − λ)n−1
=

∞∑
j=0

cj+n−1(z − λ)j ;

= h(z); (say)

where ck = u(k)(λ)
k! is the Taylor’s coefficient and j = k−n+1.As a result, the integral given in(22)

reduces into

H(u) = H

∫
L

u(z)

(z − λ)α
dz

= P

∫
L

h(z)

z − λ
dz +

n−2∑
k=0

∫
L

ck
(z − λ)n−k

= Ih +

n−2∑
k=0

Ink,

(24)

where
Ih = P

∫
L

h(z)

z − λ
dz, (25)

and
Ink =

∫
L

ck
(z − λ)n−k

. (26)

Further, since the function h(z) is analytic in the domain Ω, the first integral appearing on the
right hand side of the equation (24) is a Cauchy type singular integral. Therefore, the class of
quadrature rules Tk(u); k = 1, 2, 3 as constructed in this paper may be applied for its numerical
approximation.

However, the integral Ink(u) is analytically a diverging integral and diverges for (n − k) > 1.
Moreover, it is a hyper singular integral and its finite (Hadamard finite part) can be evaluated by
transforming the integral onto the real axis with the help of the transformation

z = λ+ lt;−1 ≤ t ≤ 1.

20
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Now, by using this transformation the integral given in equation (26) is reduced into

Ink =

∫ λ+l

λ−l

ck
(z − λ)n−k

dz

=
ck

ln−k−1

∫ 1

−1

dt

tn−k

(27)

=

{
2ck

ln−k−1

∫ 1

0
dt
tn−k , for (n− k) even ,

0 , for (n− k) odd.

The integral appears for (n− k) as even i.e. ∫ 1

0

dt

tn−k
,

is a hyper singular integral on real axis. To evaluate this integral, we consider the convergent
integral ∫ 1

ε

dt

tn−k
, (28)

and its value is obtained as

1− εk−n+1

k − n+ 1
=

1

k − n+ 1
− 1

k − n+ 1

1

εn−k−1
.

Now, letting ε → 0; (Of course the limit does not exist and so, Hadamard suggested to simply
ignore the unbounded contribution of lim

ε→0

1
ε (Ref. Kai Diethelm [3], pp.233) and to assign the

value of remaining finite expression) the finite part value of our original integral

Ink =

{ 2ck
ln−k−1(k−n+1)

, for (n− k) even ,
0 , for (n− k) odd.

According to [6], "as far as equality is concerned, the common rules for ordinary integrals are
also valid for finite part integrals, but rules concerning inequalities are not applicable".

Therefore, the integral

H(u) ≈ Th +

n−2∑
k=0

2ck
hn−k−1(k − n+ 1)

,

where Th is the quadrature rule meant for the numerical integration of the complex CPV integral
Ih.

To verify the accuracy of the proposed scheme numerically, the scheme is applied over some
standard test integrals already considered by different researchers. The results of their numerical
approximations are given in Table 1 and Table 2. The integral is evaluated by the proposed scheme
with the help of the two parametric rule T3(u) meant for the numerical evaluation of the complex
CPV integral.
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Table 1: Numerical evaluation of Cauchy type oscillatory integral.

w n Approximation of J =
∫ 1

−1 e
iwx ex

x dx Absolute Error
10 4 −0.133437973630331 + 3.400402005492587i 1.5× 10−4

6 −0.133526758349377 + 3.400524589927999i 1.7× 10−6

8 −0.133527790899802 + 3.400525943643699i 1.2× 10−8

10 −0.133527798946889 + 3.400525952073923i 6.4× 10−10

20 4 0.107976715820401 + 3.077254563155467i 4.4× 10−5

6 0.107939131902981 + 3.077231429744144i 4.0× 10−7

8 0.107938778934500 + 3.077231253498199i 2.9× 10−9

10 0.107938776647233 + 3.077231253926289i 6.1× 10−10

40 4 0.043517042181267 + 3.192609908219088i 7.4× 10−5

6 0.043466627164752 + 3.192662066140842i 1.1× 10−6

8 0.043466096017442 + 3.192663030447849i 1.2× 10−8

10 0.043466092145451 + 3.192663041465206i 6.2× 10−10

80 4 −0.029149137524665 + 3.145962386539963i 6.2× 10−5

6 −0.029210774742709 + 3.145964054630281i 6.9× 10−7

8 −0.029211455759037 + 3.145964068957362i 5.8× 10−9

10 −0.029211460936310 + 3.145964068945753i 6.2× 10−10

160 4 0.003252121838603 + 3.160386347432382i 5.9× 10−5

6 0.003195885399764 + 3.160403391201590i 6.8× 10−7

8 0.003195278879239 + 3.160403696142851i 6.2× 10−9

10 0.003195274373740 + 3.160403699536554i 6.2× 10−10

320 4 0.006315272598841 + 3.144016839268697i 5.6× 10−5

6 0.006259634806611 + 3.144019130660324i 6.0× 10−7

8 0.006259036999550 + 3.144019172305005i 5.1× 10−9

10 0.006259032576892 + 3.144019172775769i 6.2× 10−10

Table 2: Numerical evaluation of complex hyper singular integrals.

Rules Approximation of
H1 = H

∫ i

−i
ez

z2dz

Absolute
Error

Approximation of
H2 = H

∫ i

−i
ez

z3dz

Absolute
Error

T1(u) 2.972770752411771i 5.9× 10−11 2.327856361038685i 4.5× 10−12

T2(u) 2.972770752415014i 5.6× 10−11 2.327856361038938i 4.3× 10−12

T3(u) 2.972770752421825i 4.9× 10−11 2.327856361039460i 3.8× 10−12

Exact Value 2.972770752470646i 2.327856361043219i

5 Conclusion

The numerical evaluation of Cauchy type integrals of oscillatory functions was investigated
using an interpolatory type methodology combined with a quasi exact quadrature method. This
strategy is simple to implement. Table 1 indicates that whatever be the value of w, quick conver-
gence can be achieved. Further, both for a given number of points and increasing w, and for a
growing number of points and fixed w, the accuracy of the proposed schemes improves.
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